Marking instructions for each question

Question		Generic scheme	Illustrative scheme	Max mark
1.	(a)	- ${ }^{1}$ evidence of product rule with one term correct ${ }^{1,4}$ - ${ }^{2}$ complete differentiation 1,2,3	$\begin{aligned} & \bullet \quad 6 x^{5} \cot 5 x \pm x^{6}(\ldots) \\ & \text { OR }-5 x^{6} \operatorname{cosec}^{2} 5 x+(\ldots) \cot 5 x \\ & \bullet \end{aligned}$	2

Notes:

1. For candidates who produce a single term only, \bullet^{1} and \bullet^{2} are not available.
2. Award \bullet^{2} for final answers such as: $6 x^{5} \cot 5 x+x^{6}\left(-5 \operatorname{cosec}^{2} 5 x\right), 6 x^{5} \cot 5 x-x^{6} 5 \operatorname{cosec}^{2} 5 x$ and $6 x^{5} \cot 5 x-5 \operatorname{cosec}^{2} 5 x \cdot x^{6}$.
3. Do not award \bullet^{2} for final answers such as: $6 x^{5} \cot 5 x+-5 x^{6} \operatorname{cosec}^{2} 5 x, 6 x^{5} \cot 5 x+x^{6}-5 \operatorname{cosec}^{2} 5 x$ and $6 x^{5} \cot 5 x-5 \operatorname{cosec}^{2} 5 x x^{6}$.
4. Where a candidate equates $f(x)$ to $f^{\prime}(x), \bullet^{1}$ is not available (see COR A.)

Commonly Observed Responses:
A. $f(x)=x^{6} \cot 5 x$

$$
=6 x^{5} \cot 5 x-5 x^{6} \operatorname{cosec}^{2} 5 x \quad \text { Award } \bullet^{2} \text { only }
$$

B. $x^{6} \cot 5 x=x^{6} \tan ^{-1}(5 x)$
$f^{\prime}(x)=6 x^{5} \tan ^{-1}(5 x)+\frac{5 x^{6}}{1+(5 x)^{2}} \quad$ Award \bullet^{2} only
C. $f(x)=\frac{x^{6}}{\tan 5 x}$
$f^{\prime}(x)=\frac{6 x^{5} \tan 5 x-5 x^{6} \sec ^{2} 5 x}{(\tan 5 x)^{2}} \quad$ Award \bullet and \bullet^{2}
D. $f(x)=x^{6}(\tan 5 x)^{-1}$

$$
f^{\prime}(x)=6 x^{5}(\tan 5 x)^{-1}-x^{6}(\tan 5 x)^{-2} 5 \sec ^{2} 5 x \quad \text { Award } \bullet \text { and } \bullet 2
$$

	uest	Generic scheme	Illustrative scheme	Max mark
1.	(b)	-3 evidence use of quotient rule with denominator and one term of numerator correct - ${ }^{4}$ complete differentiation \bullet^{5} simplify ${ }^{1,2}$	$\cdot \frac{6 x^{2}\left(x^{3}-4\right)-\ldots}{\left(x^{3}-4\right)^{2}}$ OR $\begin{gathered} \frac{\ldots-\left(2 x^{3}+1\right)\left(3 x^{2}\right)}{\left(x^{3}-4\right)^{2}} \\ \cdot \frac{6 x^{2}\left(x^{3}-4\right)-\left(2 x^{3}+1\right)\left(3 x^{2}\right)}{\left(x^{3}-4\right)^{2}} \\ \cdot 5 \frac{-27 x^{2}}{\left(x^{3}-4\right)^{2}} \end{gathered}$	3

Notes:

1. \bullet^{5} is available only where candidates have multiplied out brackets and collected like terms in the numerator.
2. ${ }^{5}$ is not available where a candidate produces further incorrect simplification subsequent to a correct answer.

Commonly Observed Responses:

A. Candidates who rewrite function as $y=2+\frac{9}{x^{3}-4}$:

- ${ }^{3} y=2+9\left(x^{3}-4\right)^{-1}$ stated (or implied at \bullet^{4})
- $4-9\left(x^{3}-4\right)^{-2} \ldots$
- $5-27 x^{2}\left(x^{3}-4\right)^{-2}$
B. Candidates who use product rule:
- $3 x^{2}\left(x^{3}-4\right)^{-1}+\left(2 x^{3}+1\right) \ldots$ or $\ldots\left(x^{3}-4\right)^{-1}-3 x^{2}\left(2 x^{3}+1\right)\left(x^{3}-4\right)^{-2}$
-4 $6 x^{2}\left(x^{3}-4\right)^{-1}-3 x^{2}\left(2 x^{3}+1\right)\left(x^{3}-4\right)^{-2}$
-5 $-27 x^{2}\left(x^{3}-4\right)^{-2}$

Question		Generic scheme	Illustrative scheme	Max mark
1.	(c)	-6 start differentiation ${ }^{1}$ - ${ }^{7}$ complete differentiation - 8 evaluate ${ }^{2,3}$	$\begin{aligned} & \cdot \frac{-1}{\sqrt{1-(2 x)^{2}}} \\ & \cdot \frac{-1}{\sqrt{1-(2 x)^{2}}} \times 2 \\ & \bullet^{8}-4 \end{aligned}$	3

Notes:

1. At \bullet^{6} do not accept $\frac{-1}{\sqrt{1-2 x^{2}}}$ unless either $\frac{\ldots}{\sqrt{1-(2 x)^{2}}}$ or $\frac{\ldots}{\sqrt{1-4 x^{2}}}$ appears at \bullet^{7}.
2. \bullet^{8} is available only where a candidate's answer is consistent with their stated derivative.
3. Where a candidate produces an incorrect, rounded answer; at least 2 significant figures are required for the award of \bullet^{8}.

Commonly Observed Responses:

Question		Generic scheme	Illustrative scheme	Max mark
2.	(a)	- ${ }^{1}$ begin process ${ }^{1}$ - ${ }^{2}$ find determinant 1,2 \bullet^{3} equate to 3 and find p 1	$\bullet^{1} \quad \text { eg } 2\left\|\begin{array}{cc} p & 2 \\ -2 & 5 \end{array}\right\|-1\left\|\begin{array}{cc} -3 & 2 \\ -1 & 5 \end{array}\right\|+4\left\|\begin{array}{cc} -3 & p \\ -1 & -2 \end{array}\right\|$ - $214 p+45$ $\bullet^{3}-3$	3

Notes:

1. Where a candidate interchanges any 2 rows, \bullet^{1} is available only where the determinant is equated to $-3 . \bullet^{2}$ and \bullet^{3} are still available.
2. At \bullet^{2} accept $2(5 p+4)-1(-13)+4(6+p)$.

Commonly Observed Responses:

(b)	- ${ }^{4}$ any two simplified entries - ${ }^{5}$ complete multiplication ${ }^{2}$	-4,5 $\left(\begin{array}{cc}q+16 & 5 \\ -3 q+8 & -12 \\ -2 q+20 & -7\end{array}\right)$	2

Notes:

1. If the order of the resultant matrix is not 3×2 award $0 / 2$.
2. For the award of \bullet^{4} and \bullet^{5}, accept $\left(\begin{array}{cc}q+16 & 5 \\ p q+8 & -3+3 p \\ -2 q+20 & -7\end{array}\right)$.

Commonly Observed Responses:

| Question | | Generic scheme | Illustrative scheme | Max
 mark |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 2. | (c) | \bullet^{6} explain 1,2 | $\bullet^{6}$$A B$ is not a square matrix
 AND
 A general statement about square
 matrices | $\mathbf{1}$ |

Notes:

1. A general statement about square matrices could take the following form:
> Only square matrices have an inverse
$>$ Only square matrices have a determinant
> Only square matrices have an identity or unit matrix
2. Where the answer contains incorrect information (before, between or after correct information), ${ }^{6}{ }^{6}$ is not available.

Commonly Observed Responses:

A. Acceptable explanations:
"It's not a square matrix and inverses are only defined for square matrices".
"Since an identity matrix only exists for square matrices an inverse cannot be found. $A B$ is not a square matrix".
"You can only find an inverse if you can find a determinant. Only 2×2 or 3×3 matrices have a determinant. Since $A B$ is not 2×2 or 3×3, you cannot find a determinant so it has no inverse".
B. Insufficient/Unacceptable explanations
"It's not a square matrix so no inverse exists" (restates already given information)
" $A B$ is not a square matrix. Only square matrices have an inverse. The determinant of $A B$ is 0 ". "It's not a square matrix so it has no identity matrix to invert it with".
(meaning of second part of the statement is unclear)
"It's not a 2×2 or a 3×3 matrix so the determinant cannot be found"
(no general comment linking determinant and square matrices)

| Question | | Generic scheme | Illustrative scheme | Max
 mark |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3. | (a) | \bulletstate why function is
 even $1,2,3,4,5,6$ | $\bullet{ }^{1}$ graph is symmetrical about the y-axis \therefore even
 OR
 $f(-x)=(-x)^{2}-a^{2}=x^{2}-a^{2}=f(x) \therefore$ even | $\mathbf{1}$ |

Notes:

1. Do not accept use of the word 'reflected'.
2. Accept phrases such as 'symmetrical in the y-axis', 'symmetrical around the y-axis' etc.
3. For justification using the graph, explicit mention of the y-axis or the line $x=0$ must be made.
4. \bullet^{1} is not available for only stating ' $f(-x)=f(x) \therefore$ even' or ' $f(-a)=f(a) \therefore$ even'.
5. \bullet^{1} is not available for ' $f(-x)=-x^{2}-a^{2}=x^{2}-a^{2}=f(x) \therefore$ even'.
6. Where the answer contains incorrect information (before, between or after correct information), $\bullet{ }^{1}$ is not available.
Commonly Observed Responses:

(b)	-2 sketch graph 1,2,3,4	\bullet^{2}	1

Notes:

1. The (local) maximum turning point must be on the y-axis and the graph must exhibit line symmetry.
2. Do not award \bullet^{2} if the x intercepts are not labelled.
3. Graph must not be 'smooth' at x intercepts.
4. A candidate must make a reasonable attempt at reproduction when $x<-a$ and $x>a$.

Commonly Observed Responses:

| Question | | Generic scheme | Illustrative scheme | Max
 mark |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 4. | (a) | \bullet 1 complete algebraic division and
 express in required form | $\bullet 13+\frac{4 x+19}{x^{2}-x-12}$ | $\mathbf{1}$ |

Notes:

Commonly Observed Responses:

(b)	${ }^{2}$ tate expression ${ }^{1}$ - 3 form linear equation and obtain one constant - ${ }^{4}$ obtain final constant and state full expression ${ }^{2}$	$\begin{aligned} & \bullet^{2} \frac{A}{x+3}+\frac{B}{x-4} \\ & \bullet 3 x+19=B(x+3)+A(x-4) \\ & B=5 \text { or } A=-1 \\ & \bullet \\ & \bullet \\ & \hline \end{aligned}$	3

Notes:

1. Where a candidate incorrectly factorises, \bullet^{2} is not available but \bullet^{3} and \bullet^{4} may still be awarded, including the situations illustrated in the Commonly Observed Responses.
2. Do not accept $3+-\frac{1}{x+3}+\frac{5}{x-4}$ at \bullet^{4}. Accept $3+\frac{-1}{x+3}+\frac{5}{x-4}$.

Commonly Observed Responses:

1. $3+\frac{4 x+19}{x^{2}-x-12}=\frac{A}{x+3}+\frac{B}{x-4}$
$4 x+19=A(x-4)+B(x+3)$
$A=-1$ or $B=5$
leading to a final answer of $3-\frac{1}{x+3}+\frac{5}{x-4}$
2. $3+\frac{4 x+19}{x^{2}-x-12}=\frac{A}{x+3}+\frac{B}{x-4}$
$4 x+19=A(x-4)+B(x+3)$
$A=-1$ or $B=5$
leading to a final answer of $-\frac{1}{x+3}+\frac{5}{x-4}$
3. $\frac{4 x+19}{x^{2}-x-12}=\frac{A}{x+3}+\frac{B x+C}{x-4}$
$4 x+19=A(x-4)+(B x+C)(x+3)$
$A=-1$ or $B=0$ or $C=5$
leading to $3+\frac{5}{x-4}-\frac{1}{x+3}$
4. $\frac{3 x^{2}+x-17}{x^{2}-x-12}=\frac{A}{x+3}+\frac{B}{x-4}$
$3 x^{2}+x-17=A(x-4)+B(x+3)$
$A=-1$ or $B=5$
5. $\frac{3 x^{2}+x-17}{x^{2}-x-12}=\frac{A}{x+3}+\frac{B x+C}{x-4}$
$3 x^{2}+x-17=A(x-4)+(B x+C)(x+3)$
$A=-1$ or $B=3$ or $C=-7$
6. $\frac{3 x^{2}+x-17}{x^{2}-x-12}=\frac{A}{x+3}+\frac{B x+C}{x-4}$
$3 x^{2}+x-17=A(x-4)+(B x+C)(x+3)$
$A=-1$ or $B=3$ or $C=-7$
$\frac{3 x-7}{x-4}=3+\frac{5}{x-4}$ leading to $3-\frac{1}{x+3}+\frac{5}{x-4}$

Award • ${ }^{3}$

Do not award •4
Award•²

Award • ${ }^{3}$

Award • ${ }^{4}$

Award•²

Award • ${ }^{2}$

Award • ${ }^{3}$

Award \bullet^{4} (Award 2/3 if $B \neq 0$)

Do not award •2

Award \bullet^{3} but \bullet^{4} is not available

Do not award •2

Award \bullet^{3} but \bullet^{4} is not available

Award • ${ }^{2}$

Award \bullet^{3} and $\bullet{ }^{4}$

Question		Generic scheme	Illustrative scheme	Max mark
5.	(a)	- 1 find $\frac{d x}{d t}$ ${ }^{-2}$ find $\frac{d y}{d x} \quad 1$	$\begin{array}{lc} \bullet & \frac{2}{2 t+7} \\ \bullet^{2} & 2 t^{2}+7 t \end{array}$	2

Notes:

1. For \bullet^{2} do not accept $\frac{t}{1}$. $2 t+7$

Commonly Observed Responses:

Candidates who express y explicitly as a function of x :

- $1 \quad y=\frac{1}{4}\left(e^{x}-7\right)^{2}$
- $\quad \frac{d y}{d x}=\frac{1}{2}\left(e^{x}-7\right) e^{x}$
(b)

$\bullet 3$	
\bullet differentiate $\frac{d y}{d x}$ w.r.t. t and	$\bullet 3(4 t+7) \times \ldots$
evidence of strategy 1	

Notes:

1. \bullet^{3} and \bullet^{4} are not available to candidates who only differentiate $\frac{d y}{d x}$ w.r.t. t. Evidence of multiplication or division by a function of t - other than $\ln (2 t+7)$ or t^{2} - must be present.
2. At \bullet^{4}, accept $\frac{1}{2}\left(8 t^{2}+42 t+49\right)$.

Commonly Observed Responses:

1. Candidates who express y explicitly as a function of x.

$$
\begin{array}{ll}
\frac{1}{2}\left(e^{x}-7\right) e^{x}+\frac{1}{2} e^{x}\left(e^{x}\right) & \text { Award } \bullet^{3} \\
e^{2 x}-\frac{7}{2} e^{x} & \text { Award } \bullet^{4}
\end{array}
$$

2. Candidates who take a formula approach

$$
\begin{array}{ll}
\frac{2 \frac{2}{2 t+7}-\ldots}{\left(\frac{2}{2 t+7}\right)^{3}} \text { or } \frac{\ldots-2 t \times\left(-4(2 t+7)^{-2}\right)}{\left(\frac{2}{2 t+7}\right)^{3}} & \text { Award } \bullet^{3} \\
\frac{1}{2}(2 t+7)(4 t+7) & \text { Award } \bullet^{4}
\end{array}
$$

Question		Generic scheme	Illustrative scheme	Max mark
6.		- ${ }^{1}$ evidence of relationship -2 ${ }^{2}$ substitute - ${ }^{3}$ evaluate ${ }^{1,2}$	- $\frac{d V}{d r}=4 \pi r^{2}$ AND $\frac{d V}{d t}=\frac{d V}{d r} \times \frac{d r}{d t}$ OR $\frac{d r}{d t}=\frac{d V}{d t} \times \frac{d r}{d V}$ $\bullet^{2}-60=4 \pi(3)^{2} \frac{d r}{d t}$ OR $\frac{d r}{d t}=\frac{-60}{4 \pi(3)^{2}}$ - ${ }^{3}-\frac{5}{3 \pi} \mathrm{cms}^{-1}$	3

Notes:

1. At \bullet^{3} units are required. Accept decimal equivalent to at least 2 significant figures ($-0.53 \mathrm{cms}^{-1}$).
2. • ${ }^{2}$ may be implied at \bullet^{3}.

Commonly Observed Responses:

A. Candidate attaches units to an exact value but omits them from a final answer (correctly rounded or otherwise).

$$
\begin{aligned}
& -\frac{5}{3 \pi} \mathrm{cms}^{-1} \quad \text { Award } \bullet^{3} \\
= & -0 \cdot 5
\end{aligned}
$$

B. Candidate attaches units to an incorrect decimal approximation and not to the exact value (or appropriately rounded decimal approximation).

$$
\begin{aligned}
& -\frac{5}{3 \pi} \text { or }-0.53 \\
& =-0.5 \mathrm{cms}^{-1} \quad \text { Do not award } \bullet^{3}
\end{aligned}
$$

| Question | | Generic scheme | Illustrative scheme | Max
 mark |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 7. | (a) | \bullet^{1} find expression ${ }^{1,2}$ | $\bullet^{1} 3 n^{2}+16 n$ | $\mathbf{1}$ |

Notes:

1. At \bullet^{1} accept $6 \times \frac{n(n+1)}{2}+13 \times n$.
2. At \bullet^{1} accept $\frac{1}{2} n[38+6(n-1)]$ obtained via an arithmetic series.

Commonly Observed Responses:

(b)	- ${ }^{2}$ substitute 20 and evidence of subtraction from this term 1,2 ${ }^{3}$ substitute for p and find expression ${ }^{3}$	- $2\left(3 \times 20^{2}+16 \times 20\right)-\ldots$ -3 $1520-3 p^{2}-16 p$	2

Notes:

1. Where a candidate produces further incorrect simplification, subsequent to \bullet^{1} being awarded, \bullet^{2} is not available.
2. Award \bullet^{2} for $\sum_{1}^{20}(6 r+13)-\sum_{1}^{p}(6 r+13)$ only where the substitution is not carried out. Disregard errors in sigma notation provided a candidate produces an answer consistent with their response to (a).
3. Do not award \bullet^{3} for incorrect working subsequent to a correct answer.

Commonly Observed Responses:

A. $6 \times \frac{n(n+1)}{2}+13 \quad$ incorrect expression from (a)
leading to:

$$
\begin{array}{ll}
\left(3 \times 20^{2}+3 \times 20+13\right)-\ldots & \text { Award } \bullet^{2} \\
1260-3 p^{2}-3 p & \text { Award } \bullet^{3}
\end{array}
$$

Question		Generic scheme	Illustrative scheme	Max mark
9.	(a)	- ${ }^{1}$ state general term 1,2,3 - ${ }^{2}$ simplify powers of x or coefficients ${ }^{2}$ - ${ }^{3}$ state simplified general term (complete simplification) 2,4,5	$\begin{aligned} & \bullet\binom{7}{r}\left(2 x^{2}\right)^{7-r}\left(\frac{-d}{x^{3}}\right)^{r} \\ & \bullet^{2} x^{14-5 r} \text { or } 2^{7-r}(-d)^{r} \\ & \bullet^{3}\binom{7}{r} 2^{7-r}(-d)^{r} x^{14-5 r} \end{aligned}$	3

Notes:

1. Candidates may also start with a general term of $\binom{7}{r}\left(2 x^{2}\right)^{r}\left(\frac{-d}{x^{3}}\right)^{7-r}$ to obtain a simplified general term of $\binom{7}{r} 2^{r}(-d)^{7-r} x^{-21+5 r}$.
2. Where candidates write out a full binomial expansion, \bullet^{1}, \bullet^{2} and \bullet^{3} are not available unless the general term is identifiable in (b).
3. Candidates who write down $\binom{7}{r} 2^{7-r}(-d)^{r} x^{14-5 r}$ with no working receive full marks.
4. \bullet^{3} is unavailable to candidates who, in (a), produce further incorrect simplification subsequent to a correct answer eg $(-2 d)^{7-2 r}$.
5. Where 2^{7-r} and $x^{14-5 r}$ do not appear within a single term, \bullet^{3} is not available

Commonly Observed Responses:

1. General term has not been isolated. 2. General term has been isolated.

$$
\begin{aligned}
& \sum_{r=0}^{7}\binom{7}{r}\left(2 x^{2}\right)^{7-r}\left(\frac{-d}{x^{3}}\right)^{r} \\
= & \sum_{r=0}^{7}\binom{7}{r} 2^{7-r}(-d)^{r} x^{14-5 r}
\end{aligned}
$$

Do not award \bullet^{1}. Award \bullet^{2} and \bullet^{3}.

$$
\begin{aligned}
& \sum_{r=0}^{7}\binom{7}{r}\left(2 x^{2}\right)^{7-r}\left(\frac{-d}{x^{3}}\right)^{r} \\
=\quad & \binom{7}{r} 2^{7-r}(-d)^{r} x^{14-5 r}
\end{aligned}
$$

Disregard the incorrect use of the final equals sign. Award $\bullet{ }^{1}, \bullet^{2}$ and \bullet^{3}.
3. Binomial expression has been equated to general term.
$\left(2 x^{2}-\frac{d}{x^{3}}\right)^{7}=\binom{7}{r}\left(2 x^{2}\right)^{7-r}\left(\frac{-d}{x^{3}}\right)^{r}$
Disregard the incorrect use of the equals sign. Award \bullet^{1}.
4. Negative sign omitted.
$\binom{7}{r}\left(2 x^{2}\right)^{7-r}\left(\frac{d}{x^{3}}\right)^{r} \quad$ Do not award \bullet^{1} but \bullet^{2} and \bullet^{3} are still available.
5. Brackets omitted around -d
$\binom{7}{r} 2^{7-r}-d^{r} x^{14-5 r} \quad$ Do not award \bullet^{3}.

Question		Generic scheme	Illustrative scheme	Max mark
9.	(b)	- ${ }^{4}$ obtain value of $r \quad 1,2$ - 5 find value of $d{ }^{3}$	- ${ }^{4} r=3$ -5 $d=5$	2

Notes:

1. The alternative expansion leads to $r=4$.
2. Where a candidate writes out a full expansion $\bullet{ }^{4}$ may be awarded only where this is complete and correct at least as far as the required term (in either direction).
3. Where a candidate obtains an incorrect binomial expansion, \bullet^{5} will be available only where the evaluation of a root is required.

Commonly Observed Responses:

Binomial expansion:
$128 x^{14}-448 d x^{9}+672 d^{2} x^{4}-560 d^{3} x^{-1}+280 d^{4} x^{-6}-84 d^{5} x^{-11}+14 d^{6} x^{-16}-d^{7} x^{-21}$

Question		Generic scheme	Illustrative scheme	Max mark
10.	(a)	- ${ }^{1}$ apply chain or product rule -2 complete differentiation \bullet^{3} express $\frac{d y}{d x}$ in terms of x and y	-1 $2 y \frac{d y}{d x}$ or $y+x \frac{d y}{d x}$ -2 $2 x+2 y \frac{d y}{d x}=y+x \frac{d y}{d x}$ $\bullet^{3} \frac{d y}{d x}=\frac{y-2 x}{2 y-x}$	3

Notes:

1. \bullet^{3} is available only where $\frac{d y}{d x}$ appears more than once, after the candidate has completed their differentiation.
Commonly Observed Responses:

(b)	- ${ }^{4}$ equate denominator of $\frac{d y}{d x}$ to zero - ${ }^{5}$ calculate values of $k \quad 1,2$	$\begin{aligned} & \cdot 4 \quad 2 y-x=0 \\ & \cdot{ }^{5} k= \pm 4 \end{aligned}$	2

Notes:

1. At \bullet^{5}, accept $x= \pm 4$.
2. Where a candidate equates the numerator to zero, \bullet^{4} and \bullet^{5} are not available.

Commonly Observed Responses:
Intersection method.

$$
y^{2}-k y+\left(k^{2}-12\right)=0 \quad \text { Substitute for } x \text { and express in general form }
$$

- $\quad(-k)^{2}-4\left(k^{2}-12\right)=0 \quad$ Communicate condition for equal roots
-5 $k= \pm 4$

| Question | | Generic scheme | Illustrative scheme | Max
 mark |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 11. | (a) | \bullet^{1} state counterexample ${ }^{1,2}$ | \bullet^{1} eg when $n=4, n^{2}+n+1=21$
 which is not prime | $\mathbf{1}$ |

Notes:

1. A candidate must demonstrate a value of n, evaluate $n^{2}+n+1$ and communicate that this value is not prime.
2. Where the answer contains incorrect information (before, between or after correct information), \bullet^{1} is not available.

Commonly Observed Responses:

$4^{2}+4+1=21$, which is not prime. Award \bullet^{1}
(value of n has been demonstrated)

(b)	(i)	- ${ }^{2}$ write down contrapositive statement \quad 1,2,8	\bullet^{2} If n is even then $n^{2}-2 n+7$ is odd	1
	(ii)	- ${ }^{3}$ write down appropriate form for n AND substitute ${ }^{1,3,4,5,9}$ -4 show $n^{2}-2 n+7$ is odd $1,6,7,9$ - ${ }^{5}$ communicate ${ }^{1,8,9}$	- ${ }^{3} n=2 k, k \in \mathbb{N}$ and $(2 k)^{2}-2(2 k)+7$ - ${ }^{4}$ eg $2\left(2 k^{2}-2 k+3\right)+1$ which is odd since $2 k^{2}-2 k+3 \in \mathbb{N}$ - 5 contrapositive statement is true AND therefore original statement is true	3

Notes:

1. Marks $\bullet^{2}, \bullet^{3}, \bullet^{4}$ and \bullet^{5} are not available to a candidate whose statement of the contrapositive begins "If $n^{2}-2 n+7 \ldots$..."
2. Award \bullet^{2} for 'If n is not odd then $n^{2}-2 n+7$ is not even'.
3. At \bullet^{3} accept $k \in \mathbb{Z}^{+}$but do not accept $k \in \mathbb{Z}$.
4. At \bullet^{3} do not accept $n=2 n$.
5. At \bullet^{3} the form of n must be consistent with the candidate's response to $b(i)$.
6. Do not withhold \bullet^{4} for the omission of $2 k^{2}-2 k+3 \in \mathbb{N}$.
7. At ${ }^{4}$ accept any valid expression of the form $a b+c$, where a is even, b is an integer and c is odd.
8. ${ }^{5}$ is available only where a candidate's conclusion states that the contrapositive is true and links to the original statement.
9. Where a candidate's response mentions contradiction, \bullet^{3}, \bullet^{4} and \bullet^{5} are not available.

Question	Generic scheme	Illustrative scheme	Max mark

Commonly Observed Responses:

Refer to note 3 when considering any of the responses below. Where a candidate uses $n=2 k+1$ then k must be suitably defined eg " k is a whole number".
A. If n is odd then $n^{2}-2 n+7$ is even Do not award \bullet^{2}

$$
n=2 k-1, \quad k \in \mathbb{N}
$$

$(2 k-1)^{2}-2(2 k-1)+7 \quad$ Award \bullet^{3}
$2\left(2 k^{2}-4 k+5\right)$ which is even Award \bullet^{4}
The contrapositive statement is true so the original statement is true.

Award • ${ }^{5}$
B. If n is odd then $n^{2}-2 n+7$ is odd Do not award \bullet^{2}
$n=2 k-1, \quad k \in \mathbb{N}$
$(2 k-1)^{2}-2(2 k-1)+7 \quad$ Award \bullet^{3}
$2\left(2 k^{2}-4 k+5\right)$ which is not odd Do not award $\bullet^{4} . \bullet^{5}$ is not available.
C. If n is even then $n^{2}-2 n+7$ is even Do not award •2
$n=2 k, \quad k \in \mathbb{N}$
$(2 k)^{2}-2(2 k)+7$
Award • ${ }^{3}$
$2\left(2 k^{2}-2 k+3\right)+1$ which is odd
Do not award $\bullet^{4} . \bullet^{5}$ is not available.

Notes:

1. Where a candidate converts 231_{10} into a number in base 7 , \bullet^{1} is not available.
2. At \bullet^{3}, disregard the omission of base 7 .
3. A candidate who finds three, or more, remainders and writes them in reverse order may be awarded \bullet^{3}.

Commonly Observed Responses:

1.

7^{3}	7^{2}	7^{1}	7^{0}
343	49	7	1
	5	4	3

$$
\text { leading to } 543 \text { (identified) } \quad \text { Award } \bullet^{3} \text {. }
$$

2.

$$
7 \lcm{276}
$$

leading to 543 (identified) Award \bullet^{3}.
3.

$$
\begin{aligned}
231 & =7 \times 33+0 \\
33 & =7 \times 4+5 \\
4 & =7 \times 0+4
\end{aligned}
$$

leading to a final answer of 450 Do not award \bullet^{1}. Award \bullet^{2} and \bullet^{3}.

Question		Generic scheme	Illustrative scheme	Max mark
13.		- ${ }^{1}$ separate variables and write integral equation ${ }^{1}$ - ${ }^{2}$ integrate LHS -3 integrate RHS ${ }^{2}$ -4 evaluate constant of integration ${ }^{2}$ - 5 express V in terms of k and $t \quad 2,3,4$	-1 $\int \frac{1}{12-V} d V=\int k d t$ $\bullet^{2}-\ln (12-V)$ - ${ }^{3} k t+c$ ${ }^{4}-\ln 10$ $\cdot{ }^{5} V=12-10 e^{-k t}$	5

Notes:

1. Do not award • ${ }^{1}$ where $\int \ldots d V$ and $\int \ldots d t$ do not appear.
2. For candidates who omit the constant of integration, \bullet^{3} may be awarded but \bullet^{4} and \bullet^{5} are unavailable.
3. \bullet^{5} is unavailable to candidates who omit the negative sign at \bullet^{2}.
4. At \bullet^{5}, accept $V=12-\frac{10}{e^{k t}}$ or $V=\frac{12 e^{k t}-10}{e^{k t}}$ but do not accept the appearance of eg $e^{-k t+\ln 10}$ in the final answer.

Commonly Observed Responses:

Using integrating factor.
$\frac{d V}{d t}+k V=12 k$

$\mathrm{IF}=e^{k t}$	Award \bullet^{1}
$\frac{d}{d t}\left(V e^{k t}\right)=12 k e^{k t}$	
$V e^{k t}=\int 12 k e^{k t} d t$	Award \bullet^{2}
$V e^{k t}=12 e^{k t}+c$	Award \bullet^{3}
$c=-10$	Award \bullet^{4}
$V=12-10 e^{-k t}$	Award \bullet^{5}

Question		Generic scheme	Illustrative scheme	Max mark
14.		-1 show true when $n=1$ \bullet^{2} assume (statement) true for $n=k$ AND consider whether (statement) true for $n=k+1 \quad{ }^{2}$ - ${ }^{3}$ state sum to $(k+1)$ terms using inductive hypothesis ${ }^{5}$ ${ }^{4}$ extract $(k+1)$! as common factor 3,5 ${ }^{5}$ express sum explicitly in terms of $(k+1)$ or achieve stated aim/goal AND communicate 4,5,6	- ${ }^{1}$ when $n=1$ $\text { LHS }=1!\times 1=1 \text { RHS }=(1+1)!-1=1$ so result is true when $n=1$. - ${ }^{2}$ suitable statement $\text { AND } \sum_{r=1}^{k} r!r=(k+1)!-1$ AND $\sum_{r=1}^{k+1} r!r=\ldots$ $\bullet^{3} \quad(k+1)!-1+(k+1)!(k+1)$ - $(k+1)!(k+2)-1$ - ${ }^{5}((k+1)+1)$! -1 AND If true for $n=k$ then true for $n=k+1$. Also shown true for $n=1$ therefore, by induction, true for all positive integers n.	5

Question	Generic scheme	Illustrative scheme	Max mark

Notes:

1. "RHS $=1$, LHS $=1$ " and/or "True for $n=1$ " are insufficient for the award of \bullet. A candidate must demonstrate evidence of substitution into both expressions.
Accept 2!-1 for RHS.
Where a candidate does not independently evaluate the LHS and RHS, \bullet^{1} may still be awarded.
2. For \bullet^{2} acceptable phrases for $n=k$ contain:
> "If true for..."; "Suppose true for..."; "Assume true for...".

For \bullet^{2} insufficient phrases for $n=k$ contain:
> "Consider $n=k$ ", "assume $n=k$ ", "let $n=k "$.
For an insufficient phrase, do not award \bullet^{2} unless an acceptable statement subsequently appears as part of the conclusion at \bullet^{5}.

For \bullet^{2} unacceptable phrases for $n=k$ contain:
> "True for $n=k$ ", "Consider true for $n=k$ "
For an unacceptable phrase, do not award \bullet^{2} but \bullet^{5} may still be available.
For \bullet^{2} unacceptable phrases for $n=k+1$ contain:
> "Consider true for $n=k+1$ ", "true for $n=k+1$ " ; " $\sum_{r=1}^{k+1} r!r=(k+2)!-1$ " (with no further working)
3. At \bullet^{4} accept $(k+1)!(1+k+1)-1$.
4. \bullet^{5} is unavailable to candidates who have not been awarded \bullet^{4}.
5. Full marks are available to candidates who state an aim/goal earlier in the proof and who subsequently achieve the stated aim/goal, provided $((k+1)+1)$!-1 appears at some point.
6. Following the required algebra and statement of the inductive hypothesis, the minimal acceptable response for \bullet^{5} is:
"Then true for $n=k+1$, but since true for $n=1$, then true for all n " or equivalent.

Commonly Observed Responses:

	uest	Generic scheme	Illustrative scheme	Max mark
15.	(b)	- ${ }^{3}$ identify vectors - ${ }^{4}$ start to calculate angle -5 calculate complement	$\cdot\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}-2 \\ 4 \\ 3\end{array}\right)$ ${ }^{4} \cos \theta=\left(\frac{3}{\sqrt{6} \sqrt{29}}\right)$.5 any answer which rounds to 0.229 or 13°	3

Notes:

1. At \bullet^{3}, accept the appearance of the vectors within an attempt to find a scalar or vector product.
2. For a candidate who uses $\sin ^{-1}\left(\frac{3}{\sqrt{6} \sqrt{29}}\right)$ as a means of obtaining the complement directly (with no further processing) \bullet^{4} and \bullet^{5} may be awarded.
3. For a candidate who finds $\sin ^{-1}\left(\frac{3}{\sqrt{6} \sqrt{29}}\right)$ and proceeds to find its complement, \bullet^{4} is unavailable.
4. Do not award $\cdot{ }^{5}$ where the degree symbol has been omitted.

Commonly Observed Responses:

Use of definition of vector product:

$$
\sin \theta=\frac{\sqrt{165}}{\sqrt{6} \sqrt{29}}
$$

	uest	Generic scheme	Illustrative scheme	Max mark
15.	(c)	- ${ }^{6}$ parametric equations for $L_{2} \quad{ }^{2}$ -7 two equations for two parameters - 8 solve for two possible parameters - ${ }^{9}$ substitute into remaining equation and state conclusion ${ }^{3}$	- ${ }^{6} \quad x=-2 \mu+1 ; y=4 \mu+3 ;$ $z=3 \mu-2$ ${ }^{-7}$ any two from $\begin{aligned} & 2 \lambda+3=-2 \mu+1 ; \\ & \lambda-1=4 \mu+3 ; \lambda=3 \mu-2 \end{aligned}$ \bullet eg $\mu=-1 ; \lambda=0$ \bullet - eg LHS $=0$, RHS $=-5$ so lines do not intersect.	4

Notes:

1. Alternative responses:

Equating ${ }^{x}$ and ${ }^{z}$:
$2 \lambda+3=-2 \mu+1$
$\lambda=3 \mu-2$
leading to $\lambda=-\frac{5}{4}, \mu=\frac{1}{4}$
LHS $=-\frac{9}{4}$, RHS $=4$
Equating ${ }^{y}$ and ${ }^{z}$:
$\lambda-1=4 \mu+3$
$\lambda=3 \mu-2$
leading to $\lambda=-20, \mu=-6$
LHS $=-37$, RHS $=13$
2. Where candidates employ the same parameter twice leading to $x=-2 \lambda+1 ; y=4 \lambda+3 ; z=3 \lambda-2$ only \bullet^{6} may be awarded.
3. For a final response of " $0=-5$ so the lines do not intersect" do not award \bullet^{9} unless the candidate subsequently communicates the inconsistency of $0=-5$.

Commonly Observed Responses:

A.
$z=0, z=-3-2$, lines do not intersect
Award • ${ }^{9}$

Question		Generic scheme	Illustrative scheme	Max mark
16.	(a)	- ${ }^{1}$ evidence of integration by parts -2 complete first application - 3 second application of integration by parts - ${ }^{4}$ complete integration and include limits ${ }^{2}$ -5 evaluate 2,3	$\begin{aligned} & \cdot \frac{e^{4 x}}{4}\left(x^{2}-2 x+1\right)-\ldots \\ & \cdot \frac{\ldots}{2}(2 x-2) \frac{e^{4 x}}{4} d x \\ & \left.\cdot \frac{\ldots}{} \frac{e^{4 x}}{16}(2 x-2)-\frac{1}{8} \int e^{4 x} d x\right] \\ & \cdot\left[\frac{e^{4 x}}{4}\left(x^{2}-2 x+1\right)\right]_{0}^{1}-\left[\frac{1}{16}(2 x-2) e^{4 x}-\frac{1}{32} e^{4 x}\right]_{0}^{1} \\ & \bullet^{5} \frac{1}{32}\left(e^{4}-13\right) \end{aligned}$	5

Notes:

1. Disregard the omission of ' $d x$ '.
2. Evidence of limits may not appear until \bullet^{5}.
3. Do not award \bullet^{5} for a decimal approximation, unless preceded by the exact value.

Commonly Observed Responses:

(b)	- ${ }^{6}$ correct form of integral ${ }^{1,2,3}$ - ${ }^{7}$ find expression to integrate -8 integrate and evaluate 5,6	-6 $\pi \int_{0}^{1} y^{2} d x$ - ${ }^{7} 16 \pi \int_{0}^{1}\left(x^{2}-2 x+1\right) e^{4 x} d x$ - $\frac{\pi}{2}\left(e^{4}-13\right)$	3

Notes:

1. For the award of ${ }^{6}$, limits must appear at some point.
2. \bullet^{6} is not available unless " $d x$ " appears at some point.
3. At \bullet^{6}, accept $\pi \int_{0}^{1}[f(x)]^{2} d x$.
4. Evidence for the award of \bullet^{7} must include all of the following:

- 16
- $\left(x^{2}-2 x+1\right)$ or $(x-1)^{2}$
- $e^{4 x}$
unless an exact value appears at \bullet^{8}.

5. Do not award \bullet^{8} for a decimal approximation unless:
preceded by an exact value
OR
${ }^{5}$ has been withheld for the same reason AND there is sufficient evidence for \bullet^{7}.
6. Do not award \bullet^{8} for a negative volume (including eg $\frac{\pi}{2}\left(e^{2}-13\right)$).

Commonly Observed Responses:

	uest	Generic scheme	Illustrative scheme	Max mark
17.	(a)	-1 substitute and calculate one ratio $1,2,3,4$ -2 calculate second ratio and state common ratio	- $\frac{-21}{63}=-\frac{1}{3}$ or $\frac{7}{-21}=-\frac{1}{3}$ -2 $\frac{7}{-21}=-\frac{1}{3}$ or $\frac{-21}{63}=-\frac{1}{3}$ So $r=-\frac{1}{3}$	2

Notes:

1. Where a candidate calculates the first three terms only, \bullet^{1} and \bullet^{2} are not available.
2. Where a candidate calculates the first three terms and simply states $r=-\frac{1}{3}$, award \bullet. .
3. Where a candidate finds the first three terms followed by eg " $r=\frac{-21}{7}$, so $r=-\frac{1}{3}$ ", do not award ${ }^{-1}$.
4. Where a candidate calculates the first three terms and then substitutes one pair of numbers into the $n^{\text {th }}$ term formula to calculate r, award \bullet^{1} only.
5. For the award of \bullet^{2}, there must be evidence that the candidate has considered a second pair of terms.

Commonly Observed Responses:

A. First three terms found followed by:

$$
\begin{array}{ll}
\frac{-21}{63}=-\frac{1}{3} & \text { Award } \bullet^{1} \\
-21 \times\left(-\frac{1}{3}\right)=7 & \text { so } r=-\frac{1}{3}
\end{array} \quad \text { Award } \bullet^{2}
$$

	(b)	(i)	\bullet^{3} state condition ${ }^{1,2}$	$\bullet^{3}\left\|-\frac{1}{3}\right\|<1$	$\mathbf{1}$

Notes:

1. At $\bullet^{3},-\frac{1}{3}$ may be replaced by a letter consistent with the candidate's answer in (a). However, in the case where a candidate obtains a value in (a) outside the open interval $(-1,1), \bullet^{3}$ will be available only where they also acknowledge that there is no sum to infinity.
2. Award \bullet^{3} only for a strict inequality, whether expressed algebraically or in words.

Commonly Observed Responses:

Question		Generic scheme	Illustrative scheme	Max mark	
17.	(b)	(ii)	\bullet^{4} begin to substitute ${ }^{1,2,3}$	$\bullet^{4} \frac{\ldots}{1-\left(-\frac{1}{3}\right)}$	$\mathbf{2}$

Notes:

1. Where a candidate calculates a common ratio outwith the open interval $(-1,1), \bullet^{4}$ and \bullet^{5} are not available.

$$
=\frac{63\left(1-\left(-\frac{1}{3}\right)^{n}\right)}{1-\left(-\frac{1}{3}\right)}, \bullet^{4} \text { will be available only where a candidate states }
$$

that as $n \rightarrow \infty\left(-\frac{1}{3}\right)^{n} \rightarrow 0 . \cdot^{5}$ is still available.
3. For a correct answer with no working, \bullet^{4} and $\bullet{ }^{5}$ are not available.

Commonly Observed Responses:

17.

| (c) | (i) | $\bullet \bullet^{6}$ equate ratios | $\bullet \frac{-2 x+1}{5 x+8}=\frac{x-4}{-2 x+1}$ |
| :--- | :--- | :--- | :--- | :--- |
| \bullet^{7}perform algebraic manipulation
 leading to formation of quadratic
 equation 1 | $\bullet^{7} x^{2}-8 x-33=0$ | | |

Notes:

1. Evidence for the award of \bullet^{7} must include the expansion of the products of two pairs of brackets.

Commonly Observed Responses:

(ii) $\begin{aligned} & \bullet 8 \text { calculate second value of } x \\ & \bullet^{\ominus} \text { find first three terms }\end{aligned}$

\bullet	$x=-3$
\bullet	$-7,7,-7$

Notes:

Commonly Observed Responses:

		(iii)	\bullet^{10} state $S_{2 n}$ and justify 1,2	$\bullet^{10} 0$ since eg $2 n$ is even and so pairs of terms cancel each other out	$\mathbf{1}$

Notes

1. For a descriptive justification, reference must be made either to an even number of terms or to the fact that $2 n$ is even (and the consequence thereof).
2. At \bullet^{10} accept $S_{2 n}=0$ since $\frac{-7\left(1-(-1)^{2 n}\right)}{1-(-1)}=0$.

Commonly Observed Responses:

Question			Generic scheme	Illustrative scheme	Max mark
18.	(a)	(i)	-1 write in Cartesian form	-1 $a-a \sqrt{3} i$	1
Notes:					
Commonly Observed Responses:					
		(ii)	${ }^{2}$ calculate modulus - ${ }^{3}$ calculate argument 2,3,4 ${ }^{\bullet}{ }^{4}$ write in polar form ${ }^{1,4,5,6}$	- $2 a$ - ${ }^{3}-\frac{\pi}{3}$ - $42 a\left(\cos \left(-\frac{\pi}{3}\right)+i \sin \left(-\frac{\pi}{3}\right)\right)$	3

Notes:

1. At \bullet^{2} accept $\sqrt{4 a^{2}}$, but it must be simplified at \bullet^{4}.
2. For \bullet^{3}, accept any answer of the form $-\frac{\pi}{3}+2 k \pi, k \in \mathbb{Z}$.
3. Accept an argument expressed in degrees, with or without a degree symbol.
4. Evidence for \bullet^{3} may not appear until b(i). In this case, \bullet^{4} is not available.
5. At \bullet^{4}, accept $w=2 a\left(\cos \frac{\pi}{3}-i \sin \frac{\pi}{3}\right)$.
6. Do not withhold \bullet^{4} for an unsimplified modulus if \bullet^{2} has already been withheld for the same reason.

Commonly Observed Responses:

Question			Generic scheme	Illustrative scheme	Max mark
18.	(b)	(i)	${ }^{-5}$ begin process ${ }^{1}$ ${ }^{6}$ complete process ${ }^{1}$ \bullet^{7} state value of $k \quad 1,2$ \bullet^{8} state value of $m^{1,2}$	- $z_{1}=8^{\frac{1}{3}}\left(\cos \left(-\frac{\pi}{3}\right)+i \sin \left(-\frac{\pi}{3}\right)\right)^{\frac{1}{3}}$ stated or implied by ${ }^{6}$ -6 $z_{1}=8^{\frac{1}{3}}\left(\cos \left(-\frac{\pi}{9}\right)+i \sin \left(-\frac{\pi}{9}\right)\right)$ - ${ }^{7} k=2$ $\bullet^{8} m=-9$	4

Notes:

1. Where the operations carried out on the modulus and argument are incompatible eg cubing the modulus and dividing the argument by three, do not award \bullet^{5} or \bullet^{6}; however, \bullet^{7} and \bullet^{8} are still available.
2. Where a candidate obtains a non-integer value for k or $m, \mathbf{\bullet}^{7}$ or \bullet^{8} is not available.

Commonly Observed Responses:

A. $z_{1}^{3}=k^{3}\left(\cos \frac{\pi}{m}+i \sin \frac{\pi}{m}\right)^{3} \quad$ Award •5
stated or implied by ${ }^{6}$
$z_{1}^{3}=k^{3}\left(\cos \frac{3 \pi}{m}+i \sin \frac{3 \pi}{m}\right) \quad$ Award \bullet^{6}
B. $\quad w^{3}=8^{3}\left(\cos \left(-\frac{\pi}{3}\right)+i \sin \left(-\frac{\pi}{3}\right)\right)^{3}$

Do not award •5

$w^{3}=8^{3}(\cos (-\pi)+i \sin (-\pi))$
$k=512$
$m=-1$

Award ${ }^{6}$

Award $\mathbf{\bullet}^{7}$
Award ${ }^{8}$
C. Answers without working:

1. $k=2$ and $m=-9$
Award full marks
2. $k=2$ and $m \neq-9$
Award \bullet^{7} only
3. $k \neq 2$ and $m=-9$
Award \bullet^{8} only

Question			Generic scheme	Illustrative scheme	Max mark
18.	(b)	(ii)	- begin to add or subtract $\frac{2 \pi}{3}$ to or from argument of z_{1} ${ }^{10}$ state roots	$\bullet . \ldots \pm \frac{2 \pi}{3}$ stated or implied by \bullet^{10} $\begin{aligned} \bullet^{10} z_{2} & =2\left(\cos \frac{5 \pi}{9}+i \sin \frac{5 \pi}{9}\right) \\ z_{3} & =2\left(\cos \left(-\frac{7 \pi}{9}\right)+i \sin \left(-\frac{7 \pi}{9}\right)\right) \end{aligned}$	2
Notes: 1. The addition of other multiples of $\frac{2 \pi}{3}$, leading to other forms of roots, is acceptable. 2. Where a candidate finds one further root, consistent with adding or subtracting $\frac{2 \pi}{3}$ to their response to $\mathrm{b}(\mathrm{i})$ and without working, $\bullet{ }^{9}$ may be awarded. 3. \bullet^{10} is available only where a candidate produces exactly two roots, with consistent spacing, distinct from one another and also from z_{1}.					
Commonly Observed Responses:					

[END OF MARKING INSTRUCTIONS]

